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COMMENT 

Analytical bound eigenstates and eigenvalues of a truncated 
Coulomb potential 

F M Fernindez 
lmtituto de lnvestigaciones Fisicoquimicas Tedricas y Aplicadas (INIFTA), Sucursal 4, 
Casilla de Correo 16, 1900 La Plata, Argentina 

Received 9 October 1990 

Abstract. We obtain exact eigenfunctians and eigenvalues of the Schr6dinger equation 
with the potential V ( r )  = -Ze2 / ( r+  p ) ,  p > 0, for particular values of the cut-off parameter 
p. Each eigenfunction is a finite polynomial times an exponential and the eigenvalues are 
exactly those for the pure Coulomb problem (i.e. 0 = 0). 

In a recent paper De Meyer and Vanden Berghe (1990) studied the Schrodinger 
equation with the potential V ( r )  = - Z e ’ / ( r + p ) .  They obtained accurate numerical 
results by means of an algorithm based on an iterative solution of the secular equation 
derived with a scaled basis set and the properties of the Lie algebra SO(2, 1). This 
method, which had been applied to other problems by Fernhdez et a1 (1985,1986), 
appears to converge fast enough if the scaling parameter (or tilting transformation) is 
properly chosen. The results of De Meyer and Vanden Berghe (1990) are even more 
accurate than those obtained by Singh et al (1985) through numerical integration of 
an eigenvalue equation derived from the Schrodinger one by means of a nonlinear 
transformation of variables. 

De Meyer and Vanden Berghe (1990) showed that one can obtain analytical 
solutions for the above-mentioned problem for particular values of the truncation 
parameter p. If n and / are respectively the principal and angular momentum quantum 
numbers those authors proved that the eigenvalues E&) obey El+l,r(p = I + 2 )  = 
E,+, , ,+ , (p  = O ) = - Z / [ 2 ( / + 2 ) 2 ] ,  the latter being the well known eigenvalues of the 
hydrogen atom in atomic units. In addition to this, De Meyer and Vanden Berghe 
(1990) showed that exact s-state solutions can be systematically generated for certain 
values of the parameter p obtained from the roots of finite polynomials. 

Because the truncated Coulomb potential has several physical applications (Singh 
et a1 1985, De Meyer and Vanden Berghe 1990 and references therein) exact closed-form 
solutions may be of great value even though they are only available for particular 
values of p. Such exact results may serve, for instance, as benchmark values for 
approximate methods. 

The purpose of this comment is to generalize the results of De Meyer and Vanden 
Berghe (1990) and derive exact analytical results for other states. We do this by 
straightforward application of a systematic procedure based on the well known power 
series method which is customarily used to obtain the eigenstates and eigenvalues of 
most solvable quantum mechanical models. 
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The starting point is the radial part of the time-independent Schrodinger equation 

(1) 
in which E is the energy and y ( 0 )  = 0. Without loss of generality we choose z = 1 
because E ( Z ) = Z ' E ( Z =  1) and p ( Z )  = p ( Z =  l ) / Z .  

which in atomic units reads 

y"( r)+[2E +2/(  r + p )  - / ( I +  l ) / r 2 ] y (  r )  

If the solution y( r )  is written 
m 

1 u,r' a 2 =  -2E ( 2 )  y ( r )  = r l + '  e'" 
j - 0  

then the coefficients U, have to obey the following three-term recurrence relation: 

a,u,+,+biuj+cjuj-,=O (3a)  
where 

a, = p(  j + I ) (  j + 21 + 2) 

c, = 2[1- a ( I + j ) ] .  

b j= j ( j+2 / -2ap+l ) -2 (1+l )ap  
(3b) 

One obtains exact analytical solutions when the sum in ( 2 )  reduces to a finite 
polynomial. It follows from the equations above that if cut, = 0 and U,+, = 0 then U, = 0 
for all j > v. These two equations completely determine values of E and p that lead 
to exact solutions. From the former one obtains 

(I = l / ( v + / + l )  E,,,!= -1/[2(v+ I +  1)2] n = u + /  (4) 

which are energies of the pure Coulomb problem. The corresponding physical p values 
are obtained from the positive roots of U,+, =O. The case u = O  leads to 01 =O.and 
E = 0 which is only possible in the limit I + m. For this reason the lowest energy value 
for each value of I corresponds to U = 1 for which one obtains the above-mentioned 
relation between the eigenvalues of this model and those of the hydrogen atom derived 
by De Meyer and Vanden Berghe (1990). For other states (4) gives us a more general 
expression which can be expressed in compact form as E,+, , (p=p, , )= 
E,+,+,,,+,(p = 0 ) ,  where U = 1,2 , .  . . , and p,., is a positive root of U,+, = 0. When U = 1 
we obtain the results of De Meyer and Vanden Berghe (1990) for the nodeless states: 

EI+z,I= -1/[2(1+2)21 

p = 1+2. 

yn,,(r) = r'+'[1 + r / ( / + ~ ) ]  
( 5 )  

One can obtain as many solutions as desired from the roots of the equations mentioned 
above. Fo: instance, the next c a e ,  :'= 2, !ea& !C 

E,+,,, = -1/[2(1+3)21 p = ( l+3) (3 (  I +  2) - [ ( / + 2 ) (  1+6)]'/2}/[2( 1+2)] 

uo= 1 U ,  = 1/(1+3) (6) 

u2 = -( 1+2) { [ (  1+2)( /+6)] ' /2-  1]/((21+3)( /+3)2[3( 1+2)  - [( 1 + 2 ) (  f+6)]"*}. 

As Uo, U ,  > 9 and u,<o the wavefunci~on has One no& ifi (0, a), is WUiih mzn:ionii;g 
that when 1 = 0 the equations developed here lead to the equations for the s states 
obtained by De Meyer and Vanden Berghe (1990) by the transformation of the truncated 
Coulomb potential into a pure Coulomb problem with Dirichlet boundary conditions 
Y ( P )  = Y ( m )  =o. 
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As one proceeds further the expressions for E, p and the coefficients U, become 
more and more involved. The manipulation of the three-term recurrence relation is 
greatly facilitated by the use of computer algebra but the analytical computation of 
the roots of U,,, = O  becomes the bottleneck of the calculation and as a consequence 
results for large values of w are more easily obtained numerically. However, the method 
proposed here is useful to investigate the analytical properties of the solutions. For 
instance, the numerator of U,+, is a polynomial function of p of degree Y. For the 
case w = 2  discussed above only one of the two roots is positive. On the other hand, 
when Y = 3 the three roots of u4 = 0 are positive and the results are threefold degenerate 
in the sense that three values of p are consistent with one value of the energy. We do 
not show such expressions here because they are rather long and involved and do not 
add much to the present discussion. 

In this comment we have developed a systematic method for obtaining exact 
closed-form eigenvalues and eigenfunctions for the truncated Coulomb potential for 
particular values of the truncation parameter. The present treatment of the problem 
generalizes that of De Meyer and Vanden Berghe (1990) who only obtained exact 
results for the s states and nodeless states with arbitrary I values. As illustrative 
examples we have explicitly derived two infinite sets of solutions corresponding to the 
nodeless eigenfunctions and to those with just one node. 

c, 
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